## Asymmetric Epoxidations and Kinetic Resolutions of δ-Hydroxy Allylic Phosphine Oxides

Jonathan Clayden,<sup>a</sup> Eric W. Collington<sup>b</sup> and Stuart Warren<sup>a\*</sup>

<sup>a</sup>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW <sup>b</sup>Glaxo Group Research Ltd., Greenford Road, Greenford, Middx. UB6 0HE

**Abstract:** S-Hydroxy allylic phosphine oxides 5 undergo asymmetric epoxidation to yield epoxy alcohols 6 with high enantio- and diastereoselectivity. Kinetic resolutions are also successful, even with a chiral centre remote from the allylic hydroxyl, if that chiral centre bears a diphenylphosphinoyl group. The diphenylphosphinoyl group then exerts a novel anti-directing effect on the epoxidation.

Diphenylphosphinoyl-substituted epoxides<sup>1</sup> (such as 2) have been used as intermediates in the stereocontrolled connective synthesis of allylically and homoallylically substituted compounds, such as the hydroxy alkenyl sulphide  $4.^2$  Nucleophilic attack on the epoxide introduces a substituent into  $2 \gamma$  to phosphorus, and unmasks the hydroxyl group necessary to generate the controlled-geometry double bond of 3 in the final stereospecific Horner-Wittig elimination step.



Our published stereocontrolled approach<sup>1</sup> to epoxides 2 involves peracid epoxidation of  $\delta$ -hydroxy allylic phosphine oxides 1, directed *syn* by the hydroxyl group. Since the Ph<sub>2</sub>PO group was used to set up the 1,4 relative stereochemistry in 1, the chiral centre bearing OH is functioning as a "relay" centre in the transfer of stereochemical information from the Ph<sub>2</sub>PO group to the epoxide.



We now report the asymmetric synthesis of epoxides 6 from allylic phosphine oxides  $5^3$  using the enantio- and diastereoselective Sharpless epoxidation,<sup>4</sup> both in simple, achiral cases ( $R^1 = R^4 = H$ ) and in cases requiring a kinetic resolution ( $R^1$  or  $R^4 \neq H$ ). In the case of  $R^1 \neq H$ ,  $R^4 = H$ , we have discovered a remarkable, and, to our knowledge, unique example of an effective Sharpless kinetic resolution of a chiral centre *trans* to the allylic hydroxymethyl group. This allows us to control both absolute and relative stereochemistry in 6 without the use of a "relay" centre carrying the hydroxyl group.

Treatment of achiral  $\delta$ -hydroxy allylic phosphine oxides  $7a \cdot c^{3d}$  with an excess of *tert*-butyl hydroperoxide in the presence of titanium tetraisopropoxide (1 eq), L-(+)-diethyl tartrate (1.2 eq) and 4Å molecular sieves gave the epoxy alcohols 8a-c in good yields and with high enantiomeric excesses.<sup>5,8</sup>



| Fable 1. | Asymmetric Epoxidations | of Achiral | δ-Hydroxy | Allylic | Phosphine | Oxides |
|----------|-------------------------|------------|-----------|---------|-----------|--------|
| _        |                         |            |           |         |           |        |

| Entry | Starting Material 7: |          | Product 8: |                              |                       |  |
|-------|----------------------|----------|------------|------------------------------|-----------------------|--|
|       | R <sup>2</sup>       | geometry | yield (%)  | stereochemistry <sup>a</sup> | e.e. (%) <sup>5</sup> |  |
| a     | н                    | E        | 76         | (2S, 3R)                     | 82                    |  |
| b     | Me                   | E        | 91         | (2S, 3R)                     | 96                    |  |
| С     | Me                   | Z        | 85         | (25, 35)                     | 92                    |  |

\*Absolute configurations were inferred from the established rules for enantioselectivity in the asymmetric epoxidation.8

When secondary allylic alcohols 9 (bearing a chiral centre  $\delta$  to phosphorus) were epoxidised using only 0.5 equivalents of hydroperoxide and L-(+)-DIPT (diisopropyl tartrate) a kinetic resolution was observed, allowing both remaining starting material 9 and product epoxy alcohol 10 to be isolated (after h.p.l.c.) in good e.e. In accordance with the established rule<sup>8</sup> for the kinetic resolution, we assume that with L-(+)-DIPT the S allylic alcohol is the faster-reacting enantiomer. The reaction is also diastereoselective, producing the *anti* epoxide *anti*-10 only, unless there is a substituent *cis* to the hydroxymethyl group.<sup>9</sup> This *anti*-directing effect of an allylic hydroxyl group in transition metal-catalysed epoxidations is well documented.<sup>8</sup>



| Entry | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup>  | Completion <sup>a</sup><br>(%) | Ratio <sup>a</sup><br>anti-10:syn-10 | e.e. anti-10 <sup>5</sup><br>(%) | e.e. <b>R-9</b> 5<br>(%) |
|-------|----------------|----------------|-----------------|--------------------------------|--------------------------------------|----------------------------------|--------------------------|
| a     | н              | Н              | Me              | 50                             | 100:0                                | >95                              | 95                       |
| b     | Н              | Me             | Me              | 50                             | 100:0                                | >95                              | 91                       |
| c     | Me             | н              | <sup>n</sup> Pr | 45                             | 50:50                                | 85-95                            | 80                       |

<sup>a</sup>% Completion of reactions and ratios of diastercomers were all determined by integration of the NMR spectrum of the crude mixture or by analytical h.p.l.c.

| R <sup>1</sup>     | ∽_он     | <sup>1</sup> BuOOH (0.5 eq)<br>TI(O <sup>I</sup> Pr) <sub>4</sub> (0.5 eq)<br>L-(+)-DIPT (0.6 eq) R <sup>1</sup><br>$H^{1} = H^{1} = H^{1} = H^{1} = H^{1}$ |                 |                            |                                       |  |  |
|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|---------------------------------------|--|--|
| Ph <sub>2</sub> PO | (11)     | tÅ sieves, CH <sub>2</sub> Cl <sub>2</sub> Ph <sub>2</sub> PO I<br>-16 °C, 5 days anti-(12)                                                                 |                 | Ph <sub>2</sub> PO<br>2) : | h <sub>2</sub> PO<br><i>syn</i> -(12) |  |  |
|                    | Table 3. | Kinetic Resolutions                                                                                                                                         | with a Chiral C | Centre a to Pl             | h <b>osphoru</b> s                    |  |  |
| Entry              | R1       | Completion                                                                                                                                                  | Ratio           | e.e. anti-12 <sup>5</sup>  | e.e. R-11 <sup>5</sup>                |  |  |
|                    |          | (%)                                                                                                                                                         | anti-12:syn-12  | (%)                        | (%)                                   |  |  |
| a                  | Me       | 57                                                                                                                                                          | 54:46           |                            | 10                                    |  |  |
| b                  | Et       | 54                                                                                                                                                          | 65:35           | 82                         | 31                                    |  |  |
| c                  | n-Pentyl | 52                                                                                                                                                          | 68:32           | -                          | 36                                    |  |  |
| d                  | i-Pr     | 47                                                                                                                                                          | 93:7            | 85                         | 65                                    |  |  |
| e                  | Cyclohex | yl 42                                                                                                                                                       | 90:10           | 75                         | 65                                    |  |  |
|                    |          |                                                                                                                                                             |                 |                            |                                       |  |  |

The efficiency of the kinetic resolution of primary allylic alcohols 11, which have a chiral centre  $\alpha$  to phosphorus, is highly dependent on the nature of R<sup>1</sup> (Table 3). When R<sup>1</sup> is small (entry **a**), the chiral centre passes almost unnoticed by the chiral catalyst: both enantiomers epoxidise at the same rate, leading to a mixture of diastereomers and little enantiomeric enrichment of the remaining starting material. On the other hand, when R<sup>1</sup> is branched (entries **d** and **e**), one enantiomer epoxidises significantly more rapidly than the other, and an efficient kinetic resolution is observed. This is, to our knowledge, the first example of a Sharpless kinetic resolution at a chiral centre *trans* to the allylic hydroxymethyl in an acyclic system: the only previous example gave remaining starting material of only 6% e.e. at 60% completion.<sup>10</sup> This effect is presumably due to the exceptional bulkiness of the Ph<sub>2</sub>PO group.<sup>3b</sup> The relative stereochemistry of the major epoxide products *anti*-12 was determined by an X-ray crystal structure of *anti*-12d (Figure 1), and the other *anti* epoxides identified by similarities in their NMR spectra. Absolute configurations were inferred from the general rule<sup>8</sup> for enantioselectivity in the Sharpless epoxidation.







The two diastercomers 13 and 15, with chiral centres both  $\alpha$  and  $\delta$  to phosphorus, showed a marked match-mismatch effect in the kinetic resolution. When the *anti*-directing effects of the OH and Ph<sub>2</sub>PO groups co-operate, as in 13, the reaction is highly enantio- and diastercoselective. When the directing effects compete with one another, as in 15, the selectivities drop substantially.



Acknowledgements: We are grateful to the Science and Engineering Research Council for funding this work through a C.A.S.E. award (to J.C.), and to Dr R. B. Lamont for determining the crystal structure of *anti*-12d.

## **References and Footnotes:**

- 1. McElroy, A. B.; Warren, S. Tetrahedron Lett., 1985, 26, 2119-2122.
- 2. McElroy, A. B.; Warren, S. Tetrahedron Lett., 1985, 26, 5709-5712.
- (a) Brown, P. S.; McElroy, A. B.; Warren, S. Tetrahedron Lett., 1985, 26, 249-252; (b) McElroy, A. B.; Warren S. Tetrahedron Lett., 1985, 26, 1677-1680; (c) Brown, P. S.; Greeves, N.; McElroy, A. B.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1991, 1485-1492; (d) Clayden, J.; Collington, E. W.; Warren, S. Tetrahedron Lett., preceding paper.
- (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc., 1980, 102, 5974-5976; (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc., 1987, 109, 5765-5780.
- Enantiomeric excesses were determined either by integration of the <sup>19</sup>F or <sup>1</sup>H NMR spectra of the Mosher's ester derivatives (ref. 6) or by integration of the <sup>1</sup>H NMR spectrum in the presence of Pirkle's chiral solvating agent, R-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol (ref. 7).
- 6. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
- 7. Pirkle, W. H.; Sikkenga, D. L.; Parkin, M. J. J. Org. Chem., 1977, 42, 384-387.
- (a) Finn, M. G.; Sharpless, K. B. in Asymmetric Synthesis, Academic Press (1985), ed. Morrison, J. D., vol. 5, ch. 8; (b) Johnson, R. A.; Sharpless, K. B. in Comprehensive Organic Synthesis, Pergamon (1991), ed. Trost, B. and Fleming, I., vol. 7, pp 389-436; (c) Takano, S.; Iwabuchi, Y.; Ogasawara, K. Synlett. 1991, 548-550.
- (a) Rossiter, B. E. in Asymmetric Synthesis, Academic Press (1985), ed. Morrison, J. D., vol. 5, ch. 7, p. 212; (b) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda M.; Sharpless, K. B. J. Am. Chem. Soc., 1981, 103, 6237-6240.
- Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Taketani, M.; Viti, S. M.; Walker, F. J.; Woodard, S. S. Pure Appl. Chem., 1983, 55, 589-604.

(Received in UK 27 August 1992)